If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2t^2+t-9=0
a = 2; b = 1; c = -9;
Δ = b2-4ac
Δ = 12-4·2·(-9)
Δ = 73
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-\sqrt{73}}{2*2}=\frac{-1-\sqrt{73}}{4} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+\sqrt{73}}{2*2}=\frac{-1+\sqrt{73}}{4} $
| 23+7g=93 | | 6x+9+2x-5=180 | | 3(x+8)=5x+7 | | -(x-7)=-6+42 | | (x-132)/81.9^153=0.2275 | | 5(v-5)-8v=-22 | | 2z-10=2(z-5)= | | -2-+5n=4n+2 | | 5x+25+x+5=70 | | 5(x+6)=-40-5x | | x^2+48=-52 | | 5(x+6)=40-5 | | 3x+-1=1 | | -3(2u-6)+2u=6(u+6) | | z=16+31 | | 55=3x+100 | | 3x-12=13x | | 3x+5x+12=36 | | 2(w+3)-8w=-18 | | (3d-2)=8d-5 | | 1/3x+2=2/3x-1 | | x+3=-15+10x | | 5x+7+8x-8=90 | | 2x=17-5 | | F(x)=-0.1x^2+0.7x+7 | | 5/8x3/7=15/56 | | -4=8(x-5)+4x | | 6(3x+2)+8(5x+2)=x-1 | | 4(x-2+3x=27 | | 3x-2=x+28 | | 1/4x+8=1/3x+7 | | b/6+26=35 |